Transitive Factorisations into Transpositions and Holomorphic Mappings on the Sphere

نویسندگان

  • I. P. GOULDEN
  • D. M. JACKSON
چکیده

We determine the number of ordered factorisations of an arbitrary permutation on n symbols into transpositions such that the factorisations have minimal length and such that the factors generate the full symmetric group on n symbols. Such factorisations of the identity permutation have been considered by Crescimanno and Taylor in connection with a class of topologically distinct holomorphic maps on the sphere. As with Macdonald’s construction for symmetric functions that multiply as the classes of the class algebra, essential use is made of Lagrange inversion.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Recursions, Formulas, and Graph-theoretic Interpretations of Ramified Coverings of the Sphere by Surfaces of Genus

We derive a closed-form expression for all genus 1 Hurwitz numbers, and give a simple new graph-theoretic interpretation of Hurwitz numbers in genus 0 and 1. (Hurwitz numbers essentially count irreducible genus g covers of the sphere, with arbitrary specified branching over one point, simple branching over other specified points, and no other branching. The problem is equivalent to counting tra...

متن کامل

Genus 0 and 1 Hurwitz Numbers : Recursions , Formulas , and Graph - Theoretic Interpretations Ravi

We derive a closed-form expression for all genus 1 Hurwitz numbers, and give a simple new graph-theoretic interpretation of Hurwitz numbers in genus 0 and 1. (Hurwitz numbers essentially count irreducible genus g covers of the sphere, with arbitrary specified branching over one point, simple branching over other specified points, and no other branching. The problem is equivalent to counting tra...

متن کامل

Formulas, and Graph-theoretic Interpretations

We derive a closed-form expression for all genus 1 Hurwitz numbers, and give a simple new graph-theoretic interpretation of Hurwitz numbers in genus 0 and 1. (Hurwitz numbers essentially count irreducible genus g covers of the sphere, with arbitrary specified branching over one point, simple branching over other specified points, and no other branching. The problem is equivalent to counting tra...

متن کامل

m at h . C O / 9 90 30 94 16 M ar 1 99 9 Transitive factorisations in the symmetric group , and combinatorial aspects of singularity theory ∗

Transitive factorisations in the symmetric group, and combinatorial aspects of singularity theory * Abstract We consider the determination of the number c k (α) of ordered factorisations of an arbitrary permutation on n symbols, with cycle distribution α, into k-cycles such that the factorisations have minimal length and such that the group generated by the factors acts transitively on the n sy...

متن کامل

Asymptotic Properties of Normal and Nonnormal Holomorphic Mappings

Let Q be a bounded domain in CTM with Kobayashi metric fcn a&d the corresponding differential metric KQ. Let N be a hermitian manifold with hermitian inner product hw and hermitian metric d;v. Let M(Q,N) denote the class of all holomorphic mappings ƒ : fi —• N. In this paper, generalizing the classical notions of normal functions [7], Bloch functions [1], regular sequences [9], and F-point sequ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1996